This post explores how bias can creep into word embeddings like word2vec, and I thought it might make it more fun (for me, at least) if I analyze a model trained on what you, my readers (all three of you), might have written.
Often when we talk about bias in word embeddings, we are talking about such things as bias against race or sex. But I’m going to talk about bias a little bit more generally to explore attitudes we have that are manifest in the words we use about any number of topics.
Blog Editors
Recent Updates
- Podcast: Health Policy Update: Impact of the 2024 U.S. Elections – Diagnosing Health Care
- New Jersey General Assembly Passes Legislation Prohibiting Sale of Diet Pills, Weight Loss/Muscle Building Supplements to Minors
- DEA Issues Third Extension to Public Health Emergency Telemedicine Prescribing Flexibilities, Through 2025
- CMS Issuing First Risk Adjustment Data Validation Audit Notices for PY2018 Since the RADV Final Rule
- Just Released: Telemental Health Laws – Download Our Complimentary Survey and App